Generated on Tue Jan 19 2021 06:15:49 for Gecode by doxygen 1.8.13
sincos.hpp
Go to the documentation of this file.
1 /* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
2 /*
3  * Main authors:
4  * Vincent Barichard <Vincent.Barichard@univ-angers.fr>
5  *
6  * Copyright:
7  * Vincent Barichard, 2012
8  *
9  * This file is part of Gecode, the generic constraint
10  * development environment:
11  * http://www.gecode.org
12  *
13  * Permission is hereby granted, free of charge, to any person obtaining
14  * a copy of this software and associated documentation files (the
15  * "Software"), to deal in the Software without restriction, including
16  * without limitation the rights to use, copy, modify, merge, publish,
17  * distribute, sublicense, and/or sell copies of the Software, and to
18  * permit persons to whom the Software is furnished to do so, subject to
19  * the following conditions:
20  *
21  * The above copyright notice and this permission notice shall be
22  * included in all copies or substantial portions of the Software.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
28  * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
29  * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
30  * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
31  *
32  */
33 
34 namespace Gecode { namespace Float { namespace Trigonometric {
35 
36 
37  /*
38  * ASin projection function
39  *
40  */
41 template<class V>
42 void aSinProject(Rounding& r, const V& aSinIv, FloatNum& iv_min, FloatNum& iv_max, int& n_min, int& n_max) {
43  #define I0__PI_2I FloatVal(0,pi_half_upper())
44  #define IPI_2__PII FloatVal(pi_half_lower(),pi_upper())
45  #define IPI__3PI_2I FloatVal(pi_lower(),3*pi_half_upper())
46  #define I3PI_2__2PII FloatVal(3*pi_half_lower(),pi_twice_upper())
47  #define POS(X) ((I0__PI_2I.in(X))?0: (IPI_2__PII.in(X))?1: (IPI__3PI_2I.in(X))?2: 3 )
48  #define ASININF_DOWN r.asin_down(aSinIv.min())
49  #define ASINSUP_UP r.asin_up(aSinIv.max())
50 
51  // 0 <=> in [0;PI/2]
52  // 1 <=> in [PI/2;PI]
53  // 2 <=> in [PI;3*PI/2]
54  // 3 <=> in [3*PI/2;2*PI]
55  switch ( POS(iv_min) )
56  {
57  case 0:
58  if (r.sin_down(iv_min) > aSinIv.max()) { n_min++; iv_min = -ASINSUP_UP; }
59  else if (r.sin_up(iv_min) < aSinIv.min()) { iv_min = ASININF_DOWN; }
60  break;
61  case 1:
62  if (r.sin_down(iv_min) > aSinIv.max()) { n_min++; iv_min = -ASINSUP_UP; }
63  else if (r.sin_up(iv_min) < aSinIv.min()) { n_min+=2; iv_min = ASININF_DOWN; }
64  break;
65  case 2:
66  if (r.sin_down(iv_min) > aSinIv.max()) { n_min++; iv_min = -ASINSUP_UP; }
67  else if (r.sin_up(iv_min) < aSinIv.min()) { n_min+=2; iv_min = ASININF_DOWN; }
68  break;
69  case 3:
70  if (r.sin_down(iv_min) > aSinIv.max()) { n_min+=3; iv_min = -ASINSUP_UP; }
71  else if (r.sin_up(iv_min) < aSinIv.min()) { n_min+=2; iv_min = ASININF_DOWN; }
72  break;
73  default:
75  break;
76  }
77 
78  // 0 <=> in [0;PI/2]
79  // 1 <=> in [PI/2;PI]
80  // 2 <=> in [PI;3*PI/2]
81  // 3 <=> in [3*PI/2;2*PI]
82  switch ( POS(iv_max) )
83  {
84  case 0:
85  if (r.sin_down(iv_max) > aSinIv.max()) { iv_max = ASINSUP_UP; }
86  else if (r.sin_up(iv_max) < aSinIv.min()) { n_max--; iv_max = -ASININF_DOWN; }
87  break;
88  case 1:
89  if (r.sin_down(iv_max) > aSinIv.max()) { iv_max = ASINSUP_UP; }
90  else if (r.sin_up(iv_max) < aSinIv.min()) { n_max++; iv_max = -ASININF_DOWN; }
91  break;
92  case 2:
93  if (r.sin_down(iv_max) > aSinIv.max()) { iv_max = ASINSUP_UP; }
94  else if (r.sin_up(iv_max) < aSinIv.min()) { n_max++; iv_max = -ASININF_DOWN; }
95  break;
96  case 3:
97  if (r.sin_down(iv_max) > aSinIv.max()) { n_max+=2; iv_max = ASINSUP_UP; }
98  else if (r.sin_up(iv_max) < aSinIv.min()) { n_max++; iv_max = -ASININF_DOWN; }
99  break;
100  default:
101  GECODE_NEVER;
102  break;
103  }
104  #undef ASININF_DOWN
105  #undef ASINSUP_UP
106  #undef POS
107  #undef I0__PI_2I
108  #undef IPI_2__PII
109  #undef IPI__3PI_2I
110  #undef I3PI_2__2PII
111 }
112 
113 /*
114  * Bounds consistent sinus operator
115  *
116  */
117 
118  template<class A, class B>
119  ExecStatus
120  Sin<A,B>::dopropagate(Space& home, A x0, B x1) {
121  GECODE_ME_CHECK(x1.eq(home,sin(x0.val())));
122  Rounding r;
123  int n_min = 2*static_cast<int>(r.div_up(x0.min(), pi_twice_upper()));
124  int n_max = 2*static_cast<int>(r.div_up(x0.max(), pi_twice_upper()));
125  if (x0.min() < 0) n_min-=2;
126  if (x0.max() < 0) n_max-=2;
127  FloatNum iv_min = r.sub_down(x0.min(),r.mul_down(n_min, pi_upper()));
128  FloatNum iv_max = r.sub_up (x0.max(),r.mul_down(n_max, pi_upper()));
129  aSinProject(r,x1,iv_min,iv_max,n_min,n_max);
130  FloatNum n_iv_min = r.add_down(iv_min,r.mul_down(n_min, pi_upper()));
131  FloatNum n_iv_max = r.add_up (iv_max,r.mul_down(n_max, pi_upper()));
132  if (n_iv_min > n_iv_max) return ES_FAILED;
133  GECODE_ME_CHECK(x0.eq(home,FloatVal(n_iv_min,n_iv_max)));
134  GECODE_ME_CHECK(x1.eq(home,sin(x0.val()))); // Redo sin because with x0 reduction, sin may be more accurate
135  return ES_OK;
136  }
137 
138  template<class A, class B>
140  Sin<A,B>::Sin(Home home, A x0, B x1)
141  : MixBinaryPropagator<A,PC_FLOAT_BND,B,PC_FLOAT_BND>(home,x0,x1) {}
142 
143  template<class A, class B>
144  ExecStatus
145  Sin<A,B>::post(Home home, A x0, B x1) {
146  if (x0 == x1) {
147  GECODE_ME_CHECK(x0.eq(home,0.0));
148  } else {
149  GECODE_ME_CHECK(x1.gq(home,-1.0));
150  GECODE_ME_CHECK(x1.lq(home,1.0));
151  GECODE_ES_CHECK(dopropagate(home,x0,x1));
152  (void) new (home) Sin<A,B>(home,x0,x1);
153  }
154 
155  return ES_OK;
156  }
157 
158 
159  template<class A, class B>
163 
164  template<class A, class B>
165  Actor*
167  return new (home) Sin<A,B>(home,*this);
168  }
169 
170  template<class A, class B>
171  ExecStatus
174  return (x0.assigned()) ? home.ES_SUBSUMED(*this) : ES_FIX;
175  }
176 
177  /*
178  * Bounds consistent cosinus operator
179  *
180  */
181 
182  template<class A, class B>
183  ExecStatus
185  GECODE_ME_CHECK(x1.eq(home,cos(x0.val())));
186  Rounding r;
187  FloatVal x0Trans = x0.val() + FloatVal::pi_half();
188  int n_min = 2*static_cast<int>(r.div_up(x0Trans.min(), pi_twice_upper()));
189  int n_max = 2*static_cast<int>(r.div_up(x0Trans.max(), pi_twice_upper()));
190  if (x0Trans.min() < 0) n_min-=2;
191  if (x0Trans.max() < 0) n_max-=2;
192  FloatNum iv_min = r.sub_down(x0Trans.min(),r.mul_down(n_min, pi_upper()));
193  FloatNum iv_max = r.sub_up (x0Trans.max(),r.mul_down(n_max, pi_upper()));
194  aSinProject(r,x1,iv_min,iv_max,n_min,n_max);
195  FloatNum n_iv_min = r.add_down(iv_min,r.mul_down(n_min, pi_upper()));
196  FloatNum n_iv_max = r.add_up (iv_max,r.mul_down(n_max, pi_upper()));
197  if (n_iv_min > n_iv_max) return ES_FAILED;
198  GECODE_ME_CHECK(x0.eq(home,FloatVal(n_iv_min,n_iv_max) - FloatVal::pi_half()));
199  GECODE_ME_CHECK(x1.eq(home,cos(x0.val()))); // Redo sin because with x0 reduction, sin may be more accurate
200  return ES_OK;
201  }
202 
203  template<class A, class B>
205  Cos<A,B>::Cos(Home home, A x0, B x1)
206  : MixBinaryPropagator<A,PC_FLOAT_BND,B,PC_FLOAT_BND>(home,x0,x1) {}
207 
208  template<class A, class B>
209  ExecStatus
210  Cos<A,B>::post(Home home, A x0, B x1) {
211  if (x0 == x1) {
212  GECODE_ME_CHECK(x0.gq(home,0.7390851332151));
213  GECODE_ME_CHECK(x0.lq(home,0.7390851332152));
214  bool mod;
215  do {
216  mod = false;
217  GECODE_ME_CHECK_MODIFIED(mod,x0.eq(home,cos(x0.val())));
218  } while (mod);
219  } else {
220  GECODE_ME_CHECK(x1.gq(home,-1.0));
221  GECODE_ME_CHECK(x1.lq(home,1.0));
222  GECODE_ES_CHECK(dopropagate(home,x0,x1));
223  (void) new (home) Cos<A,B>(home,x0,x1);
224  }
225  return ES_OK;
226  }
227 
228 
229  template<class A, class B>
233 
234  template<class A, class B>
235  Actor*
237  return new (home) Cos<A,B>(home,*this);
238  }
239 
240  template<class A, class B>
241  ExecStatus
244  return (x0.assigned()) ? home.ES_SUBSUMED(*this) : ES_FIX;
245  }
246 
247 }}}
248 
249 // STATISTICS: float-prop
250 
void mod(Home home, IntVar x0, IntVar x1, IntVar x2, IntPropLevel ipl)
Post propagator for .
Definition: arithmetic.cpp:263
Propagator for bounds consistent cosinus operator
ExecStatus ES_SUBSUMED(Propagator &p)
Definition: core.hpp:3490
static ExecStatus post(Home home, A x0, B x1)
Post propagator for .
Definition: sincos.hpp:210
#define ASINSUP_UP
static ExecStatus dopropagate(Space &home, A x0, B x1)
Perform actual propagation.
Definition: sincos.hpp:120
void aSinProject(Rounding &r, const V &aSinIv, FloatNum &iv_min, FloatNum &iv_max, int &n_min, int &n_max)
Definition: sincos.hpp:42
virtual Actor * copy(Space &home)
Create copy during cloning.
Definition: sincos.hpp:166
static ExecStatus post(Home home, A x0, B x1)
Post propagator for .
Definition: sincos.hpp:145
Sin(Space &home, Sin &p)
Constructor for cloning p.
Definition: sincos.hpp:161
#define forceinline
Definition: config.hpp:185
Propagation has computed fixpoint.
Definition: core.hpp:476
Computation spaces.
Definition: core.hpp:1701
#define GECODE_ME_CHECK_MODIFIED(modified, me)
Check whether me is failed or modified, and forward failure.
Definition: macros.hpp:64
Base-class for both propagators and branchers.
Definition: core.hpp:627
#define GECODE_ES_CHECK(es)
Check whether execution status es is failed or subsumed, and forward failure or subsumption.
Definition: macros.hpp:91
int p
Number of positive literals for node type.
Definition: bool-expr.cpp:232
FloatNum sin_up(FloatNum x)
Return upper bound of sine of x (domain: )
#define ASININF_DOWN
Execution has resulted in failure.
Definition: core.hpp:473
FloatNum pi_twice_upper(void)
Return upper bound of .
Definition: num.hpp:57
#define POS(X)
virtual ExecStatus propagate(Space &home, const ModEventDelta &med)
Perform propagation.
Definition: sincos.hpp:242
#define GECODE_ME_CHECK(me)
Check whether modification event me is failed, and forward failure.
Definition: macros.hpp:52
Floating point rounding policy.
Definition: float.hh:154
static ExecStatus dopropagate(Space &home, A x0, B x1)
Perform actual propagation.
Definition: sincos.hpp:184
Post propagator for SetVar SetOpType SetVar SetRelType r
Definition: set.hh:767
void cos(Home home, FloatVar x0, FloatVar x1)
Post propagator for .
Float value type.
Definition: float.hh:334
Mixed binary propagator.
Definition: pattern.hpp:204
static FloatVal pi_half(void)
Return .
Definition: val.hpp:109
ExecStatus
Definition: core.hpp:471
virtual ExecStatus propagate(Space &home, const ModEventDelta &med)
Perform propagation.
Definition: sincos.hpp:172
Propagator for bounds consistent sinus operator
Execution is okay.
Definition: core.hpp:475
Cos(Space &home, Cos &p)
Constructor for cloning p.
Definition: sincos.hpp:231
const Gecode::PropCond PC_FLOAT_BND
Propagate when minimum or maximum of a view changes.
Definition: var-type.hpp:292
virtual Actor * copy(Space &home)
Create copy during cloning.
Definition: sincos.hpp:236
Gecode toplevel namespace
void sin(Home home, FloatVar x0, FloatVar x1)
Post propagator for .
friend FloatVal max(const FloatVal &x, const FloatVal &y)
Definition: val.hpp:386
int ModEventDelta
Modification event deltas.
Definition: core.hpp:89
friend FloatVal min(const FloatVal &x, const FloatVal &y)
Definition: val.hpp:398
Home class for posting propagators
Definition: core.hpp:853
double FloatNum
Floating point number base type.
Definition: float.hh:106
#define GECODE_NEVER
Assert that this command is never executed.
Definition: macros.hpp:56
FloatNum sin_down(FloatNum x)
Return lower bound of sine of x (domain: )
FloatNum pi_upper(void)
Return upper bound of .
Definition: num.hpp:49